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The collision efficiency in a dilute suspension of sedimenting drops is considered, with 
allowance for particle Brownian motion and van der Waals attractive force. The drops 
are assumed to be of the same density, but they differ in size. Drop deformation and 
fluid inertia are neglected. Owing to small particle volume fraction, the analysis is 
restricted to binary interactions and includes the solution of the full quasi-steady 
Fokker-Planck equation for the pair-distribution function. Unlike previous studies on 
drop or solid particle collisions, a numerical solution is presented for arbitrary PCclet 
numbers, Pe, thus covering the whole range of particle size in typical hydrosols. Our 
technique is mainly based on an analytical continuation into the plane of complex 
PCclet number and a special conformal mapping, to represent the solution as a 
convergent power series for all real PCclet numbers. This efficient algorithm is shown 
to apply to a variety of convection-diffusion problems. The pair-distribution function 
is expanded into Legendre polynomials, and a finite-difference scheme with respect to 
particle separation is used. Two-drop mobility functions for hydrodynamic interactions 
are provided from exact bispherical coordinate solutions and near-field asymptotics. 
The collision efficiency is calculated for wide ranges of the size ratio, the drop-to- 
medium viscosity ratio, and the PCclet number, both with and without interdroplet 
forces. Solid spheres are considered as a limiting case; attractive van der Waals forces 
are required for non-zero collision rates in this case. For Pe 3 1, the correction to the 
asymptotic limit Pe+ co is O(Pe-l''). For Pe 4 1, the first two terms in an asymptotic 
expansion for the collision efficiency are C/Pe+ic2, where the constant C is 
determined from the Brownian solution in the limit Pe+ 0. The numerical results are 
in excellent agreement with these limits. For intermediate Pe, the numerical results 
show that Brownian motion is important for Pe d @lo2). For Pe = 10, the trajectory 
analysis for Pe + co may underestimate the collision rate by a factor of two. A simpler, 
approximate solution based on neglecting the transversal diffusion is also considered 
and compared to the exact solution. The agreement is within 2-3 YO for all conditions 
investigated. The effect of van der Waals attractions on the collision efficiency is 
studied for a wide range of droplet sizes. Except for very high drop-to-medium 
viscosity ratios, the effect is relatively small, especially when electromagnetic 
retardation is accounted for. 

1. Introduction 
Numerous theoretical investigations have been made in recent years to calculate the 

collision efficiency in a dilute suspension of sedimenting spheres. For typical hydrosols 
with particles generally smaller than 50 pm, the fluid and particle inertia can usually be 
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neglected, as can drop deformation. On the other hand, a comprehensive physical 
model for the collision process should necessarily include van der Waals attractive 
forces and Brownian motion. Van der Waals attractions, being singular when two 
particles touch, play a crucial role in the collision of highly viscous drops and are 
required for the aggregation of solid smooth spheres, owing to the high hydrodynamic 
resistance of the lubrication liquid layer between two nearly touching surfaces (Davis 
1984). The gravity-induced relative motion with respect to Brownian relative motion 
is measured by the Piclet number, Pe, which is proportional to the fourth power of 
particle size (Zhang & Davis 1991). Typical hydrosol particles ranging from 0.5 to 5 pm 
in size may therefore have a broad range of Piclet numbers, from small to high values. 
However, to the best of our knowledge, only the limiting cases Pe < 1 and Pe 9 1 have 
been rigorously considered so far. 

Spielman (1970) developed a theoretical model to predict the rate of coagulation for 
monodispersed rigid spheres subject to Brownian diffusion only (Pe = 0). Valioulis & 
List (1 984) and Kim & Zukovski (1 990) performed similar calculations for 
heterodispersed rigid spheres. Melik & Fogler (19844 derived a two-term asymptotic 
expansion for the collision efficiency of rigid spheres at Pe < 1 by matched asymptotic 
expansions. Wang & Wen (1990) extended their calculations and obtained a four-term 
asymptotic expansion, in a manner very similar to that used by Acrivos & Taylor 
(1962) for heat or mass transfer to a sphere at small Peclet number. For gravity- 
induced coagulation of rigid spheres without Brownian diffusion (Pe = a), theoretical 
models have been developed by Davis (1984) and Melik & Fogler (1984h) to predict 
the rate of coagulation using trajectory analyses, and by Wen & Batchelor (1985) using 
an asymptotic approach to the convection-diffusion equation at Pe + GO. As expected 
for correct two-sphere hydrodynamics, all of these studies show that the hydrodynamic 
resistance to relative motion causes the collision rates to approach zero as the attractive 
forces become weak. 

For spherical non-Brownian drops, Zinchenko (1 982) calculated the collision 
efficiency by a trajectory analysis, without considering the effects of interparticle 
attraction. The finite collision efficiency in this case is due to a weaker singularity of the 
hydrodynamic resistance when the drops approach each other, in comparison to the 
case of solid spheres. Zhang & Davis (1 99 1) included the effects of van der Waals forces 
and also considered the other limiting case of strong Brownian diffusion, Pc. = 0. In all 
of these studies, the results of well-advanced theories for two-drop hydrodynamic 
interactions were used, including exact bispherical coordinate solutions for the motion 
along (Rushton & Davies 1973; Haber, Hetsroni & Solan 1973) and normal 
(Zinchenko 1980) to the line-of-centres and near-field asymptotic solutions for small 
separations (Zinchenko 1978, 1982; Davis, Schonberg & Rallison 1989). 

The main objective of the present work is to calculate exactly the gravity-induced 
collision efficiency for two unequal drops with and without van der Waals attraction 
at arbitrary Peclet number, thus covering the whole range of particle size in typical 
hydrosols. The limiting case of solid spheres at arbitrary Pe is included. In $2, the 
problem is formulated as the solution of the full quasi-steady, Fokker-Planck (FP) 
equation for the pair distribution function, p(r) .  In lieu of matched asymptotic 
expansions (Wang & Wen 1990), which can provide a remarkable accuracy for small 
Pe =I= 0, but, unfortunately, fail quickly as the PCclet number grows (see $6), we offer 
an efficient numerical technique valid for aribitrary Pe ($ 3). After the boundary 
condition at infinity has been transferred to some remote, but finite sphere, the problem 
becomes one of regular perturbations and, in principle, the solution can be expanded 
in powers of Pe. Obviously, the radius h of convergence is small (and tends to zero, 
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when the position of the outer boundary tends to infinity), and so in practice this 
expansion cannot be used for finite Pe. However, all the singularities for this expansion 
in the plane of complex Pe prove to be purely imaginary. Owing to this, we proceed 
from the initial expansion by a special conformal mapping, w = w(Pe), to a new 
expansion, in powers of cv, which is convergent for all real Pe. The coefficients of the 
new series can be computed as easily from the FP equation. After the collision 
efficiency is calculated as a convergent series in powers of w, the effect of the outer 
boundary is explored. This technique is also applicable to a variety of con- 
vection-diffusion problems, including steady heat or mass transfer to an arbitrary- 
shaped particle (or a collection of particles) at finite Pe, as shown in Appendix B. For 
practical solution, p(r)  is further expanded into Legendre polynomials, and a 
conservative, second-order finite-difference scheme with respect to particle separation 
is used. Special measures are undertaken to provide for sufficient mesh refinement at 
the collision surface, r = a,+a,, and to make the scheme economical at large 
separations ($2.1). This algorithm appears to be much faster than traditional numerical 
techniques, especially for Pe 9 1. Another decisive advantage of our method is the 
analytical dependence upon Pe (via w),  whereas traditional approaches require a 
separate calculation for each Pe. 

An analytical continuation of a power expansion, as a method for solving 
convection-diffusion problems at finite Pe, was first used by Kim & Fan (1984) in their 
study of the orientation distribution function for axisymmetric non-spherical particles 
in a shear flow. Their technique was successful for values of Pe not exceeding twice the 
radius h of convergence of the initial expansion. In our case, Pe/h is quite large, owing 
to h < 1 and the high values of Pe considered, and so we found it necessary to develop 
an alternative technique. The familiar Euler transformation (Van Dyke 1974) is also 
inappropriate for our problem (see 93.2). 

The test calculations are discussed in $4, including a delicate comparison of our 
convergence-tested solution for Pe < O( lo3) with the trajectory analyses by Zinchenko 
(1982) and Zhang & Davis (1991). The local asymptotic structure of the solution for 
high but finite Pe is also discussed in $4, for the case of no van der Waals force. 

Even though our algorithm is capable of providing high accuracy and is far more 
efficient than the other exact methods attempted, it is computationally slow for Pe 2 
O(100). For this reason, an approximate solution based on neglecting the transversal 
diffusion is also considered ($5).  The same simplification was used ad hoc by Prieve & 
Ruckenstein (1974), to calculate collision rates for solid spheres of very small size ratio. 

In $6, the systematic results are presented for the collision efficiency as a function of 
the size ratio, the drop-to-medium viscosity ratio, and the Peclet number, for wide 
ranges of these parameters, with and without unretarded van der Waals forces. The 
exact results are compared with those from a trajectory analysis (Zhang & Davis 1991), 
with our approximate solution, and with the so-called additive approximation. The 
effect of electromagnetic retardation of the van der Waals forces on the collision 
efficiency is also studied, for a wide range of particle size. All the calculations have been 
performed on an IBM PC 486. 

2. Formulation of the problem 
Consider a dilute, locally homogeneous emulsion containing spherical drops of 

viscosity p' and density p' dispersed in an immiscible fluid of viscosity pe and density pe. 
Both fluids are Newtonian and isothermal, and it is assumed that there are no 
surfactants or interfacial tension gradients on the drop surfaces. The presence of 
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FIGURE 1. Schematic of the coordinate system used for the relative motion 
of two different-sized drops. 

impurities on the drop surfaces gives rise to interfacial tension gradients which cause 
the drops to behave like rigid spheres; this situation is described by our analysis in the 
limit ,u'/,ue --f co. For dilute dispersions, the probability of a third drop influencing the 
relative motion of two interacting drops is small, and so the analysis is restricted to 
binary interactions of drops with radii a, and a2, as shown in figure 1. The interfacial 
tension is assumed large enough to keep the drop surfaces spherical, and the particles 
are sufficiently small so that their inertia is negligible and the quasi-steady Stokes 
equations hold for the fluid motion inside and outside the drops. The relative drop 
motion is affected by gravity, Brownian diffusion, and interparticle van der Waals 
attraction. Only 'rapid ' coagulation or coalescence is considered herein, and so 
repulsive forces are neglected, as discussed by Zhang & Davis (1991). 

In the dilute limit, the pair distribution functionp(r), which is the probability density 
to find a sphere of radius a,  centred at Y provided that there is a sphere of radius a, 
centred at the origin, satisfies the quasi-steady Fokker-Planck type equation 

(2.1) v * ( p ( d  V,,W) = 0. 

The relative velocity V,, = V, -  V ,  is of the form (Batchelor 1982; Zhang & Davis 
1991) 

V,,(r) = VI",' * [nnL(s) + (1- nn) M(s)] 

- DE)[nnG(s) + (1- nn) H(s)] - V (Inp(r)), (2.2) 

where n = r / r ,  / is the unit second-order tensor, and G12 is the interparticle potential 
(detailed forms for Q,, are discussed in $ 6 ) .  The relative velocity V,' due to gravity for 
two widely separated drops is given by the Hadamard-Rybczysnki formula (Lamb 
1945) : 

where j = p'/,ue is the viscosity ratio, h = a,/a,  < 1 is the radius ratio, g is the 
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gravitational acceleration vector, and qO) is the settling velocity of an isolated drop. 
Similarly, the relative diffusivity due to Brownian motion for two widely separated 
drops is 

where k is the Boltzman constant and T is the absolute temperature. 
The relative mobility functions for motion along the line of centres ( L  and G)  and 

motion normal to the line of centres ( M  and H )  describe the effects of hydrodynamic 
interactions between the two drops. These functions depend on I;, A, and the magnitude 
s of the dimensionless centre-to-centre vector: s = 2r/(a, +a,). Complete information 
about the hydrodynamic functions L, G, M and His  available from the literature (see 
9 l), including exact bispherical coordinate solutions at arbitrary separations, as well as 
far-field and near-field asymptotics. In particular, for s + co, the standard method of 
reflections yields 

G ,  H = 1 + O(S-’), 

( 3 , ~ + 2 )  ( ~ 3 -  1) 
2@+ 1)(1 +A)@,- 1 ) ’  

C,=- J 
The other relations for the hydrodynamic functions necessary in the present work are 
outlined in Appendix A. 

The three terms on the right-hand side of (2.2) represent the contributions of gravity, 
interparticle forces, and Brownian diffusion to the drop relative motion, respectively. 
Their relative importance may be measured by a dimensionless interparticle force 
parameter, el,, and the PCclet number: 

where YCi) = 1 vCP,,l and A is the composite Hamaker constant, which is chosen as a 
measure of the strength of the interparticle forces (see 96). Assuming that the 
interparticle force acts along the line of centres, we have the following expression for 
the dimensionless relative velocity IL = V,,/v,’ (Zhang & Davis 1991): 

1 
U = - L(s) Cos 0 e, + M(s) sin 0 e, - - G$’(s) e, 

Q12 

- - 1 [ G(s) e, + -2 (In p )  e,] , (2.7) 
s ae Pe as 

where e, and e, are unit vectors in the radial and tangential directions in a spherical 
polar coordinate system (see figure l), respectively, and q5 = @, , /A  is the dimensionless 
interparticle force potential, and $’ = d$/ds. 

The inner boundary condition is 

p = 0 for Y = a,+a,, (2.8) 

which results from the assumption that the colliding drops coalesce (or flocculate, in 
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the case of solid spheres) upon contact. The absence of far-field correlations yields the 
outer boundary condition 

p - f l  forr-too. (2.9) 

The collision rate 4, is the flux of pairs into the contact surface r = a, + a, and is 
given by 

J12 = -n, n2 1 P q, * ndA, (2.10) 
r+u,+a2 

where n, and n, are the number of drops at a given time in the size categories 
characterized by radius a,  and u2, respectively, per unit volume of the dispersion. Using 
(2.1) and the divergence theorem, the integral in (2.10) may be taken over any surface 
enclosing the contact surface. If the drops are assumed to more independently, without 
hydrodynamic and interparticle interaction and without Brownian diffusion, the 
collision rate is given by the classical Smoluchowski relation 

4;) = n,  n, x(ul + a2)'. 

The collision efficiency E is defined as 

(2.1 1) 

E = .&JJg'. (2.12) 

As discussed in 9 1, only the limiting cases Pe 4 1 and Pe >> 1 have been rigorously 
considered so far. A more comprehensive numerical solution, valid for arbitrary values 
of Pe, el,, and any form of interparticle potential $(s), is obtained in the present work. 
Note that, for a given form of $(s) for which the Hamaker constant is the only 
parameter, the collision efficiency E depends on four dimensionless parameters A, ,&, Pe 
and 2 = A/kT = Pe/Q,,. Thus, an efficient numerical technique is needed to allow for 
comprehensive calculations. 

3. Method for the exact solution at arbitrary Peclet numbers 
3.1. Discretization 

As the first step, the pair distribution function is expanded into Legendre polynomials, 
Pn : 

m 

P(S>  = C an($) 4 (COS 0). (3.1) 
n=o 

Legendre polynomials are chosen because the pair distribution function is axi- 
symmetric. It is also convenient to expand the radial probability flux in a similar way: 

l a 3  

-s2pu, = i c qn(s) P, (cos 0). 
Pe n=O 

Substituting (2.7) and (3.1) into (3.2), and using the recurrent properties of Legendre 
polynomials (Abramowitz & Stegun 1972), yields the relation between an(s) and qn(s) : 

n + l  
an-, + - 

2n + 3 
] forn 2 0. (3.3) 

n da, qn = S ~ G - + & ~ G $ ' ( S ) ~ , +  Pes2L 
ds 

Using (2.7), the FP equation (2.1) can be written as 
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Substituting (3.1) and (3.2) into (3.4), and using again the properties of P, (cos O), we 
arrive at the second relation : 

The relations (3.3) and (3.5) can be considered as an infinite system of first-order 
differential equations for a&) and qn(s). A special transformation of (3.3) and (3.5) is 
used to considerably reduce the number of nodes of our finite-difference approximation 
at large separations. First, we note that, for Pe + 0 and s+ 00, the coefficients a,  with 
n =# 0 behave like O(S-') and a, = 1 + O ( S - ~ )  (see Appendix C). So, we proceed from 
a,(s) to new functions 

(with Sij being the Kronecker delta) which are smoother at large separations. More 
significantly, equation (3.3) shows that all functions qn(s) with n =l= 1 are limited as 
s + co, whereas ql(s) behaves like O(s2), which hampers an accurate finite-difference 
representation at s + 1. The necessary transformation from q,(s) to new coefficients 
q,(s) is of the form 

bn(s) = s2[a,(s) - a,, 01 (3.6) 

q n ( S )  = ijn(s)+6,,, Pes2 1 -- ( 2:)y 
(3.7) 

with C, defined in (2.5). The system (3.3) and (3.5), written in the new variables b,(s) 
and q,(s), takes the form 

db 2G 
ds s 

4, = G L - -  b, + aG+'(s) [b, + S,,,s2] 

(3.8) 
n 

2n- 1 

n(n + 1) Hb, Pe M n ( n  + 1 )  dq", - 
S 

+ 
ds S2 

It follows from (3.8), (3.9), and the asymptotics (2.5) that all g,(~), as well as b,(s), 
approach constant values as s --f co, and so a relatively few nodes of our finite- 
difference approximation to (3.8) and (3.9) suffice at large separations. This 
improvement allows us to considerably increase the number of nodes at the collision 
surface s = 2, which is particularly important for the case of a weak attractive force 
and high Peclet numbers. Using a monotonically increasing mapping, s = s(x) (with 
s(0) = 2) ,  the system (3.8) and (3.9) can be rewritten in a general form as 

(3.10) 

(3.11) 

A conservative, second-order finite-difference approximation to (3.1 Ot(3.11) is used 

(3.12) 

(3.13) 

on a uniform mesh, 0 = x, < x, < . . . < xI: 

db,/dx z (b:' - bi)/Ax, 

4, z :(& + qz'), 
dq",/dx z (4"";' - qi)/Ax, 
b, z i (b i  + b;'), 

5 F L M  2x0 



126 A .  Z .  Zinchenko and R. H .  Davis 

where bi  = b,(s(xi)) and & = qn(s(xi)). Exact values for the other quantities in 
(3.10k(3.11) are evaluated at the middle point, where 0 < i d I -  1. It seems 
difficult to find an optimum form of the mapping s = s(x) at the inner boundary, since 
the answer would depend on a particular choice of the norm in the solution space, the 
Piclet number, etc. In our calculations, the best convergence, as I+ 00, for the collision 
efficiency was achieved, on the average, for the mapping 

[s(s - 2)]1/4 = x, (3.14) 

which has rather restrictive mesh refinement at s z 2, but is quite economical at large 
separations. 

The inner boundary condition (2.8) takes the form 

bO, = -4S,,,. (3.15) 

The best choice for the computational outer-boundary condition would be db,/ds z 
0. However, for high Pe, this condition may violate our method of solution (see g3.2). 
So, a simpler, stiff boundary condition was used in the present work: 

b: = 0, (3.16) 

which distorts the asymptotics b,(s)+const + 0 only in the vicinity of the outer 
boundary s = sI = s(xr) % 1. The Galerkin expansion (3.1) is truncated, as usual : 

b: = 0 forn > N .  (3.17) 

Once the mapping (3.14) is fixed, the only accuracy-determining program parameters 
include the number I+ 1 % 1 of nodes with respect to particle separation, the maximum 
order N 9 1 of harmonics included, and the position sI % 1 of the outer boundary. In 
the specific case of very high viscosity ratio ,i, it is difficult to accurately calculate the 
asymmetric hydrodynamic functions M and H for very small separations (see 
Appendix A). For this case, the initial node is chosen slightly different from touching: 

X, = ~ t o ~ ~ o + 2 ~ ~ 1 ~ 4 ~  (3.18) 

with 6, 1 and bO, = -(2+<,)2Sn,0 instead of (3.15). For very high ,i, the van der 
Waals attraction should be necessarily included; otherwise, the region of small 
separations would affect the collision efficiency too much, thus invalidating the 
physical model of undeformable drops (Zinchenko 1982). Owing to this, in our 
calculations with 1; = 104 and attractive forces present, the limit t o + O  was achieved 
with high accuracy for 6, = lop2 - lop3, where numerical calculations of M and H are 
still quite reliable. 

Once the boundary-value, finite-difference problem (3.10)-(3.17) for b: and & is 
solved, the collision efficiency can be found as 

E = &/Pe. 

The result is independent of i~ [0, I]. 

(3.19) 

3.2. The solution of the discretized problem by an analytical continuation 
The traditional semi-implicit scheme for the solution of the finite-difference problem 
(3.10)-(3.17), with time dependence introduced and the diffusive and van der Waals 
parts being taken at the new timestep, proved too inefficient for systematic use, 
especially for Pe 3 O( 10') when an extremely slow convergence to a steady state was 
observed, even for a maximum allowed timestep. A far more efficient technique was 
exploited in the present work based on an analytical continuation of the solution into 
the plane of complex Ptclet numbers. 
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FIGURE 2.  Conformal mapping from the PCclet-number plane (a) to w-plane (b). The crosses are 
the spectrum points. 

In dimensionless form, (2.1) can be written as 

V-(D-Vp+AG#’(s)pe,) = PeV.(pv), (3.20) 

where D = nnG + (I- nn) H is the dimensionless relative diffusion tensor and u is the 
convective part of the relative velocity given by the first two terms in (2.7). The solution 
of tlie initial problem (2. l), (2.8) and (2.9) cannot be expanded into powers of Pe, since, 
in the infinite region 2 < s < 00, this is a problem of singular perturbations (see Wang 
& Wen 1990). However, if the condition p = 1 is imposed on any remote, but finite 
outer boundary, as in (3.16), the power expansion becomes possible. Fixing Â  = A/kT ,  
we have 

p(s) = po(s) + Pep,(s) + . . . + Pe”p,(s) + . . . , (3.21) 

v (D - ~p,+A~#/(s )p ,e , )  = v - (pvp1 0) for v 2 0, (3.22) 

with p-l = 0 and appropriate boundary conditions specified for p,. Consider the 
spectrum for (3.20), i.e. the set of PCclet numbers in the complex plane for which the 
problem (3.20), with the boundary conditionsp = 0 at s = 2 and at the outer boundary, 
has a non-trivial solution p + 0. Assume that all the spectrum is purely imaginary (see 
below) and h is the distance from zero to the two nearest spectrum points, Pe = f hi 
(see figure 2a). The expansion (3.21) is of little use for calculations, since it is 
convergent only for I Pel < h, and, necessarily, h + 0 when the position s = sI of the 
outer boundary tends to infinity. However, the conformal transformation 

2hw 
Pe = ~ 

1-w2 
(3.23) 

maps the plane of Pe with two cuts from f hi to 00 (solid lines in figure 2 4  onto the 
unit circle lwl < 1. In particular, all the spectrum (crosses in figure 2) is mapped into 
the circumference IwI = 1. Hence, the solution as a function of w is regular inside the 
circle IwI < 1 and can be represented there as a convergent series 

p(s) = po(s) + wP1(s) + . . . + wY,(s) + . . . . (3.24) 

As a result, the convergence of (3.24) is guaranteed for all positive real Pklet numbers, 
since 0 < w < 1 for 0 < Pe < 00. Starting from (3.24), all the quantities of interest, i.e. 
the collision rate (2.10), can also be represented as convergent series in powers of w. 
This is the essence of our method. 

5-2 
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From a computational viewpoint, it would be a mistake to try calculating a sufficient 
number of terms in (3.21) and then re-expand (3.21) into powers of w using (3.23), 
because of a catastrophic loss of accuracy as u increases. Instead, the relation (3.23) 
should be substituted directly into (3.20), and the scheme for determining the successive 
terms in (3.24) then becomes 

(3.25) 

with d-, = d-,  = 0 and appropriate boundary conditions specified for d,,. The only 
difference of (3.25) from (3.22) is that (du-j?-2)/(2h) is calculated first viad,-l and then 
used to find p,,. So, an arbitrary number of terms in (3.21) and in (3.24) can be 
computed, if the left-hand side operator in (3.20) is easily invertible. 

The basic question, however, is whether the spectrum for (3.20) lies on the imaginary 
axis. Remarkably, this property of the spectrum can be analytically proved for (3.20), 
if a = 0 and V u = 0 (see Appendix B), which includes a large number of 
convection-diffusion problems (but not the present one). Another question is whether 
the spectrum remains purely imaginary when a Galerkin and/or finite-difference 
approximation to (3.20) is used. These two questions are resolved as described below. 

First, an expansion into powers of Pe is applied to the discrete problem (3.10)-(3.17), 
resulting in 

bi = b ~ , o + P e b ~ , l + . . . + P e " b ~ , , +  ..., (3.26) 

qi = qi,"+ Peg",,l+...+Peu4"2,,,,+ . . . .  (3.27) 

For given u and n, the finite-difference problem for determining bi = b;,, and i j i  = 

&,, is of the form 

(3.28) 

(3.29) 

b, = -4S,,, b, = 0, (3.30) 

where the coefficients ai, pi, and yi are given, and& and gi are calculated via b;,,,,,+, 
and bFil,u-l. For every u and n, taken as parameters, the system (3.28)-(3.30) with a 
band matrix is solved economically by a Gaussian elimination technique to determine 
bi and lj,. Namely, each solution of (3.28)-(3.29) satisfying the boundary condition 
b, = 0, also satisfies 

(3.31) 

bi+l = L,b,+K, for0 d i d  Z-1, (3.32) 

where the coefficients Qi, Ri, Li and Ki allow recurrent calculation in the order of 
descending i. The other boundary condition (3.30) is then used, together with 
(3.3 1)-(3.32), to successively calculate b,, &, . . . , b,, and 4,. 

Obviously, b i ,  , and q;, ,, are equal to zero for n += u (mod 2). In particular, the most 
important quantity, 4; (see (3.19)), is expanded into even powers: 

A .  Z. Zinchenko and R. H. Davis 

V - [D - V O ; , - ~ , - 2 ) + ~ G ~ ' ( s ) ( d , - d , - 2 ) e r ]  = 2hV. (dv-l u) for u 3 0, 

oli bi +pi bi+l = qi + iji+l +fi for 0 d i d Z- 1, 

for 0 d i d Z- 1, ijgitl - i j i  = yi(bi +bi+l)+g, 

b, = Q i i j i +  R, for 0 d i d I ,  

(3.33) 

The analysis of DombSykes ratios (Van Dyke 1974), qo,v/qo,u+2, in several 
calculations showed that the nearest (to zero) singularity for the expansion (3.33) in the 
plane of Pe2 lies on the real negative axis and is a simple pole. The distance h2 from zero 
to this singularity is 

h2 = lim 140,2k/q0,2k+21 (3.34) 
k+ac 

and can be computed to nearly machine double precision using 40-50 terms in (3.33). 
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FIGURE 3. Typical behaviour of the Taylor coefficients, 4,. 2 k .  h = 0.5, j.2 = 2, N = I = 50, s, = 10. 

Subtraction of the nearest singularity contribution and the analysis of DombSykes 
ratios for the remainder of the series (3.33) (see Van Dyke (1974) for the procedure) 
reveals that the next singularity in the plane of Pe2 is also real and negative. It is 
impossible to proceed far with this estimation of the spectrum, because of a rapid loss 
of accuracy. Instead, our method can be implemented based on the hypothesis that all 
singularities for (3.33) in the plane of Pe2 lie on the real negative axis. Namely, the 
relation (3.23), with h > 0 given by (3.34), is substituted into the finite-difference form 
of (3.10)-(3.11), to directly compute the expansions of b: and & in powers of w: 

4: = q o , o + W 2 q o , 2 + . . . + W 2 k q 0 , 2 k +  .... (3.35) 

Technically, (3.35) is constructed in almost the same manner as (3.33) (cf. (3.22) and 
(3.25)). 

The coefficients q0, 2k remain of order of unity when k + co, as shown in figure 3 for 
a = 0 and a rather coarse discretization. This behaviour is typical for all our 
calculations with various A, ,h, 2, N ,  I and sI. Thus, (3.35) has always the unit radius 
of convergence, and the spectrum for (3.20) is, indeed, purely imaginary. Our 
discretization never violates this property, which may be due to the conservative 
property of the finite-difference scheme used. However, the spectrum was observed to 
deviate slightly from the imaginary axis for the case of the soft outer boundary 
condition dbn/ds z 0 - which is the reason why (3.16) was preferred in our 
calculations. 

For a given Pe, the expansion (3.35) was found to be much more efficient than the 
' time-dependent ' approach. Another, and decisive, advantage of our method is the 
analytical dependence on Pe (via w), and so the solution for a whole set Pe, < . . . < Pe, 
of necessary Plclet numbers (with reasonable m) is as efficient as for Pe = Pe,, whereas 
the time-dependent approach requires a separate calculation for each Pe. Since 
w zz 1 for Pe = Pe,, a reasonable upper estimate of the tail in (3.35) for all Pe < Pe, 
can be made, replacing do ,2k  for high k by the average of 140,2kl and summing up 
the geometric progression in (3.35) with w = w(Pe,). 
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Unlike our method based on (3.23), the traditional Euler transformation Pe2 = 
uh’/( 1 - u) (see Van Dyke 1974) is very unsuitable for this problem. Indeed, the series 
(3.33) re-expanded in powers of u would be convergent for IuI < 1 (and, hence, for all 
real Pe > 0). However, apart from the difficulty of re-expanding, many more terms 
than used in (3.35) would be required, since u N 1 -h2/Pe2, whereas w ‘v 1 -h/Pe for 
h/Pe + 1. 

It is interesting to note that the radius h of convergence of (3.21) has a universal 
asymptote 27c/sI, when the outer boundary s = sI tends to infinity, independent of A, 
,G, 2 and $(s) (see Appendix C). The behaviour h - s;’ can be understood from the fact 
that, for Pe < 1, the expansion (3.21) is expected to diverge when the outer boundary 
is ‘somewhere’ in the outer asymptotic region (Wang & Wen 1990), s 2 O(Pe-’). 

The relation (3.34) yields the optimum h for the best convergence of (3.35). However, 
any slightly smaller value can be used, with nearly the same efficiency. Thus, high 
accuracy in determining h from (3.34) is not required. 

4. Test calculations 
To check the method and the code, consider first a model situation, when particles 

move and diffuse up to contact without any hydrodynamic and van der Waals 
interaction, i.e. we set L = M = G = H = 1 and q5 = 0 for all separations. The problem 
then simplifies to 

dP 
az 

Pe-i-V‘p = 0, 

p = 0 f o r s =  2, 

p + l  fors+co, 

where z is the coordinate in the direction of gravity. We call this the ‘Smoluchowski 
model for finite Pkclet number’, and it has an analytical series solution (see Appendix 
C). In table 1, the analytical solution is compared with our numerical solution 
described in 93, and excellent agreement for the collision efficiency E is generally 
observed. For small Pe, when p approaches unity very slowly as s + co, the agreement 
can be improved by increasing sI. In the model calculations for table 1, the mapping 
(s-2)”’ = x was used. 

As a very sensitive test of our code with full hydrodynamic interactions, a 
comparison was made with the solutions of Zinchenko (1982) and Zhang & Davis 
(1991) for non-Brownian drops without van der Waals attraction. The numerical 
results by our code are presented in figure 4 for 30 d Pe < 750. As a convergence check 
for all data, the program parameters were varied in the range N = 280-400, I = 
10CL150, and sI = 2540.  It was found that the relative variation in the collision 
efficiency does not exceed O(lOP4). The results appear to be a linear function of Pe-’’’ 
for high Pe, and the extrapolation to Pe = co using the last two values of each row, as 
shown in figure 4, yields Eezt = 0.197, 0.125, 0.091 and 0.060 for ,G = 0, 0.5, 1 and 2, 
respectively, in very good agreement with Em = 0.202, 0.127, 0.093 and 0.061 by 
trajectory analyses (Zinchenko 1982; Zhang & Davis 1991) : 

Em = exp[ -21’ “ M - L  SLds]. 
(4.4) 

where the subscript 00 refers to Pe = co. 
The slow approach to Em in figure 4, with an error O(Pe-’/’), has a simple physical 
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FIGURE 4. Extrapolation of the finite-PCclet-number collision efficiencies to the non-Brownian limit 
Pe = CQ, for AIkT = 0, h = 0.5. 

Pe 0.03 0.1 0.3 1 3 10 

Numerical solution 
I=  100, N = 3 0 , 3 , = 2 0  74.24 22.74 8.5316 3.6570 2.1171 1.4619 
I = 200, N = 40, S, = 40 70.54 22.03 8.5126 3.6569 2.1171 1.4619 

Analytical solution 68.65 21.94 8.5121 3.6568 2.1170 1.4619 

TABLE 1. The collision efficiency for the Smoluchowski model at finite PCclet numbers 

explanation. Consider the structure of the solution in a meridian half-section (figure 5 )  
at Pe = 00. The limiting relative trajectory touches the contact surface s = 2 at 0 = fn 
and separates colliding and non-colliding trajectories. Obviously, p = 0 in the 'shadow 
zone' bounded by the downstream part of the limiting trajectory (0 > in), the contact 
surface, and the symmetry axis. Everywhere outside the shadow zone, p(s) can be 
found from (2.9) and the Liouville equation: V - (pu)  = 0. The solution has an isotropic 
form (Batchelor 1982): 

The relation (4.4) follows from (4.5) and (2.7), by integrating the probability flux 
-qv, over the upstream part (0 < 0 < in) of the contact surface s = 2. The solution 
(4.5) is singular at s+ 2, as O((s-2)-'I2) for 0 < I I ;  < co and as O(l ln(s-2)I) for II;  = 0 
(see Appendix A), and it does not satisfy the inner boundary condition p = 0, which 
is corrected for high, but finite Pe by the upstream boundary layer of thickness Pe-'. 
Similarly, for 1 + Pe < 00, there exists another boundary layer, along the downstream 
limiting trajectory, matching p x 0 (presumably of the order O(Pe-'), see $6) in the 
shadow zone, with p = q(s) outside this region. The thickness of this layer, at s - 2 - 1, 
is O(Pe-'''), as for any subcharacteristical boundary layer (Cole 1968). (Obviously, 
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FIGURE 5 .  On the asymptotic structure of the solution for Pe $ 1 and A / k T  = 0 in the meridian half- 
section: 1. upstream part of the limiting trajectory, 2. typical collision trajectory, 3. upstream 
boundary layer on the contact surface s = 2, with 0 < 0 < $71, 4. shadow zone, 5 .  downstream 
subcharacteristical boundary layer, and 6. control surface. 

1.5 

- 
3 1.0 
bo 

0.5 

T T T  7TI-TTn-Tr 

2.00 2.02 2.04 2.06 2.08 2.10 
S 

FIGURE 6. Radial distribution function for h = 0.5, ,L = 2, A / k T  = 0, and different Piclet numbers. 
Solid lines: N = 280,1= 150,s, = 40; dashed lines: N = 400,1= 1 5 0 , ~ ~  = 25. (i) Pe = 1000; 
(ii) Pe = 500; (iii) Pe = 300; (iv) Pe = 200. 

this layer is responsible for a large number of harmonics required in the solution for 
Pe 9 1.) Owing to the conservation law (2.1), the coalescence rate can be obtained by 
integrating the probability flux over any closed control surface, well-separated from the 
enclosed contact surface s = 2, as shown in figure 5 by a dashed line. The finite-Piclet- 
number correction to the probability flux -pu . n is O(Pe-’) everywhere on the control 
surface, except in the boundary layer. In the latter region, p - 1, u - n - 1, and the 
integration over this portion of the control surface yields the observed O(Pe-l”) 
correction to the collision efficiency (interestingly, this conclusion is independent of the 
behaviour of hydrodynamic functions at s+2 ,  and is valid both for 0 < ,k < co and 
,2 = 0). However, we did not attempt to find the slopes of the lines in figure 4 
analytically, since it would require an analysis of the solution at the critical points = 2, 
6’ = in, to obtain initial conditions for the downstream boundary layer. 

Our convergence-tested caiculations of the radial distribution function g(s) (i.e. the 
pair distribution function p ( s )  averaged over all orientations) in figure 6 are also in 
agreement with the asymptotic structure of the solution. When the Peclet number is 
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high, g(s) first tends to be singular as s+2, and then drops to zero, according to the 
inner boundary condition. Figure 6 also clearly demonstrates the necessity of mesh 
refinement in the numerical solution at s = 2. 

The asymptotic structure of the solution also shows the behaviour of the Fourier 
coefficients a&) at large distances for Pe = 00. using the orthogonality properties of 
the Legendre polynomials yields the identity 

a,(s)--S,,, = -j-[P(x)-4(s)l 4nr2 P,(cos6)dA+[q(s)- 11-,,,, (4.6) 

where the integration is taken over a sphere of radius r .  The function p - q is non-zero 
only in the shadow zone of finite thickness at s + co, resulting in the O(s-’) estimate for 
the first term of (4.6), whereas the last term is only O ( S - ~ )  (Batchelor 1982) or zero. 
These arguments shows a sufficiently fast decay of a,(s)-S,,, at s- t  co in the non- 
Brownian limit and help to explain why, even at very high Pe when the wake extends 
out of the cutoff distance, the latter does not have to be very large for an accurate 
numerical solution. 

5. Approximate approach : parabolization of the Fokker-Planck equation 
Even though our algorithm is capable of providing remarkable accuracy and is far 

more efficient than the other exact methods attempted, it is still too slow for Pe % 1 to 
allow for comprehensive calculations. For example, in order to compute the function 
E(Pe) in the range 0 < Pe < Pe, for h = 0.5, ,ii = 2, N = 200, I = 50 and sI = 25, with 
a guaranteed convergence in (3.35) to 0.1 YO accuracy, it takes about 15 min of CPU 
time for Pe, = 200 and 54 min for Pe, = 500. So, it is of interest to consider a simpler 
but approximate approach based on parabolization of the FP equation. 

The last term in (3.4), with a factor Pe-l, represents the transversal diffusion and 
has a zero mean on any sphere s = const > 2, and one can expect a rather small effect 
of this oscillating term on the solution when Pe 9 1. So, the idea of the approximate 
approach is to solve, instead of (3.4), the equation 

with p = cos 6, which is obtained by neglecting the last term in (3.4) and using (2.7). 
Equation (5.1) is now of parabolic type with respect to p. Hence, in addition to the 
boundary conditions (2.8) and (2.9), only the initial condition at p = 1 is required to 
start integration to p = - 1, resulting in a quite efficient non-iterative solution. In this 
particular case, the initial distribution of p(s) is contained in (5.1) on the assumption 
of the regularity of&, p) at ,u = 1. So, instead of a finite-difference scheme with respect 
to p, it is quite natural to expand the solution into powers of p- 1. All the terms of 
the expansion can then be found successively from (5.1). 

For practical solution, (5.1) is written as a system of two first-order equations, with 
a special transformation to improve the quality of the finite-difference scheme at large 
separations (cf. with (3.8)-(3.9)): 

!!! = EA[b( ,u2-  1)]+2Pesp 
as ap 

ab 2G 
as s 

q = G---b++G$‘(s)(b+s2)+Pep 
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where b = s 2 ( p -  1).  The finite-difference approximation to (5.2) and (5.3) is similar to 
that of $3.1 for the system (3.8) and (3.9), with the same mapping (3.14). The finite- 
difference problems for calculating the successive terms in the power expansions for b 
and q are solved by the Gaussian elimination technique for band matrices, similar to 
the procedure used in $3.2. The collision efficiency is then found as 

by analytical integration of the power expansion for q. 
Unlike the exact method of $ 3, this approach requires a separate calculation for each 

Peclet number. Besides, the numerical experiments show that, for very high Pe, the 
number I+ 1 of finite-difference nodes should be quite large, to ensure the convergence 
of the power expansion, especially for viscosity ratio ,h close to zero and size ratio close 
to unity. In particular, Pe - lo3 may require I - lo3 (if sI - 2540). For drops, there 
should always exist some (very high) critical value Pe*, so that, for Pe > Pe*, the 
integration of (5.1) up to 6' = x becomes an incorrect Cauchy problem, since at Pe -t 
co the upstream boundary layer exists only for 6' < +x (see $4). That is the reason why 
I should be sharply increased at Pe = Pe*. This problem does not occur for solid 
spheres. Nevertheless, this method remains very efficient since, even for I =  lo3, the 
calculation for one Peclet number, Pe d lo3, takes no more than a few seconds of CPU 
time, if the hydrodynamic functions are computed beforehand. The validity of this 
approximation, however, can be checked only by comparison with the exact solution, 
which is done below. 

6. Numerical results for the collision efficiency 

For Pe e 1, the collision efficiency is E li C/Pe,  where the coefficient 
6.1. Calculations without van der Waals forces 

c = ( 
was computed by Zhang & Davis (1991) as a function of h and ,&. Even though the next 
term of the asymptotic expansion was not considered in their work, it follows from the 
analysis of Melik & Fogler (1984a) that the knowledge of C allows construction of the 
two-term asymptotics for Pe < 1 : 

c c2 
Pe 2 

E N  EA == -+-. 

For finite Pe, we found it helpful to plot the ratio E/E,, which is a relatively weak 
function of the Peclet number, with the limiting values of unity and 2E,/C2 for Pe+O 
and Pe+ co, respectively. The results are presented in figure 7. To determine E from 
these data, the values of C from table 2 can be used. The solid lines in figure 7 were 
calculated by the exact method of $3 with N = 20, I = 400, and sI = 200 for 0.1 d Pe d 2 
and N = 200, Z = 100, and sI = 25 for 2 ,< Pe ,< 200, and are convergence-tested. 
All the solid lines approach unity, as Pe + 0, in agreement with (6.2). The dashed lines 
represent the convergence-tested parabolized approximation (PA) of 9 5, extended up 
to Pe - lo3. This approximation appears to be excellent for Pe % 1 and is practically 
indistinguishable from the exact solution even for Pe - 5. As follows from the 
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FIGURE 7. Normalized collision efficiency as a function of Pkclet number, for drops without van der 
Waals attraction and having radius ratios (a) h = 0.9, (b)  h = 0.5, (c) h = 0.25, and ( d )  y = 0.10. The 
solid lines are from the exact solution, and the dashed lines are from the parabolized Fokker-Planck 
equation. (i) ji = 0 ;  (ii) ,ii = 0.5; (iii) ,ii = 2; (iv) /i = 10. 

ji h = 0.1 

0 1.712 
0.25 1.653 
0.5 1.609 
1 1.545 
2 1.465 
5 1.348 

10 1.262 

0.15 0.25 0.35 0.5 0.75 0.9 

1.636 1.531 1.463 1.401 1.356 1.347 
1.566 1.449 1.375 1.308 1.259 1.250 
1.514 1.389 1.311 1.242 1.192 1.182 
1.440 1.305 1.223 1.151 1.099 1.090 
1.349 1.204 1.118 1.044 0.992 0.983 
1.219 1.064 0.976 0.902 0.851 0.842 
1.125 0.965 0.878 0.806 0.757 0.748 

TABLE 2. Values of C in (6.1) 

asymptotic structure of the solution at Pe + 1 ($4) for s - 2  - 1, the last term in (3.4), 
with zero mean on a sphere of radius s, is only of order of unity in the thin downstream 
boundary layer and is of order of Pe+ outside this region. Thus, on average, this term 
is expected to produce little effect. As s --t 2, this term seems also insignificant, since the 
downstream boundary layer approaches the contact surface along the &direction. 
These are possible reasons for the success of PA at moderately high Pe. In the other 
limit, Pe + 0, the exact solution is independent of 8 and is also contained in (5.1). These 
arguments help to explain why, quite unexpectedly, PA appears to be a very good 
approximation for all PCclet numbers and size and viscosity ratios, with an error not 
exceeding 2-3 % in any case. 
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FIGURE 8. Probability flux onto the contact surface, as a function of cos 0, for drops without van der 
Waals attraction for (a) small and (b) large PCclet numbers. The solid lines are from the exact 
solution, and the dashed lines are from the parabolized Fokker-Planck equation. h = 0.5, ,i = 2. 

Even less obvious is whether PA can properly predict local quantities. Figure 8 
presents the convergence-tested results for the probability flux, 

- lim s 2 p ,  (s + 2), (6.3) 

on the contact surface, as a function of cos0. Again, PA (dashed lines) is very close 
to the exact solution for Pe 3 10. In particular, a very small local flux from the shadow 
zone onto the downstream portion of the contact surface (cosh' < 0) for Pe % 1, with 
plausible scaling Pe-', is properly predicted by PA. 

In contrast to PA, it is also interesting to consider another approximation based on 
the old idea of additivity. This approximation E z C/Pe+ E,  assumes that the 
collision rates in the limits of strong (Pe + 0) and weak (Pe + co) Brownian motion can 
be simply added, to cover the range of intermediate Peclet numbers. This ad hoc 
approximation has no physical background and can be considered, at best, as an 
interpolation between the two limits. More importantly, the comparison with the exact 
calculations, though not shown in figure 7, reveals considerable underestimation of the 
collision efficiency by the additive approximation for intermediate values of Pe. In case 
of h = 0.9, the maximum error varies from 31 YO (for 11; = 0) to 47 YO (for ,2 = 10). For 
the other values of h = 0.5, 0.25 and 0.1, these figures are 34-49%, 41-54Y0 and 
54-61 %, respectively. One reason for the lack of success of the additive approximation 
is the improper correction O(Pe-'), instead of O(Pe-1'2), at Pe 9 1 (see $4). 

The ratio E / E ,  is only a weak function of h and ,k. Thus, figure 7, along with the 
values of C from table 2, provide a representative description of the collision efficiency 
for drops with no van der Waals attraction in the range 0.1 < h < 1, with ,k 6 10. 

6.2. Collision eficiency with van der W a d s  forces 
The calculations have been also performed for drops and solid spheres with unretarded 
attractive potential (Hamaker 1937) : 

8h 
CD = - & A (  + 

(s2-4)(1 +A)' ?(A+ 1)"4(1 -A)' 12 

where A is the composite Hamaker constant. The collision efficiency E now depends 
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FIGURE 9. Normalized collision efficiency as a function of PCclet number, for drops with unretarded 
van der Waals attraction and having radius ratios (a) h = 0.9, (b) h = 0.5, (c) h = 0.25, and (d) h = 
0.10. A / k T  = 1.25. The solid lines are from the exact solution, the short-dashed lines are from the 
parabolized Fokker-Planck equation, and the long-dashed lines are from the trajectory analysis of 
Zhang & Davis (1991). The dotted line in (b) is from the asymptotic theory of Wang & Wen (1990), 
equation (6.6). (i) ,i = 0, (ii) ,i = 1, (iii) ,i = lo4. 

b h = 0.1 0.15 0.25 0.35 0.5 0.75 0.9 

0 1.790 1.736 1.660 1.609 1.561 1.526 1.519 
0.5 1.722 1.655 1.562 1.503 1.447 1.406 1.398 
1 1.681 1.607 1.507 1.443 1.384 1.340 1.332 
2 1.635 1.554 1.446 1.377 1.315 1.269 1.260 

10 1.552 1.458 1.337 1.262 1.196 1.147 1.137 
104 1.512 1.413 1.286 1.209 1.141 1.091 1.082 

TABLE 3. Values of C in (6.5), for unretarded Hamaker Potential (6.4) with A / k T  = 1.25 

on four dimensionless parameters A, p, Pe, and A/kT .  A typical value A / k T  = 1.25 
was chosen. For Pe 4 1, the asymptotic formula (6.2) holds, with the coefficient 

computed by Zhang & Davis (1991) for several values of the parameters. For the 
purposes of the present work, the values of Care also given in table 3. The ratios E/E,  
are plotted in figure 9. These results can be used along with the data from table 3 to 
calculate the collision efficiency E. The case L; = lo4 practically corresponds to solid 
spheres, which are allowed to come into contact due to van der Waals attraction. 
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FIGURE 10. Probability flux onto the contact surface, as a function of cos 8, for drops with unretarded 
van der Waals attraction at (a) small and (b)  large Peclet numbers. The solid lines are from the 
exact solution, and the dashed lines are from the parabolized Fokker-Planck equation. h = 0.25, 
,ii = 0.5, A/kT = 1.25. 

As for drops without interparticle forces, the parabolized approximation (short- 
dashed lines in figure 9) is surprisingly very close to the exact solution (solid lines) for 
all Pe, A, and I;. The two solutions are practically indistinguishable for Pe 2 O( lo), 
both for the collision efficiency (figure 9) and for the local probability flux onto the 
contact surface (figure lo). 

The long-dashed lines in figure 9 are from a trajectory analysis, with Brownian 
diffusion neglected. The dependence on the PCclet number is only due to the 
interparticle force term in (2.7), with l/Q12 = Pe-l A /kT .  To obtain these results, the 
same method used in Zhang & Davis (199 1) was employed, with backward integration 
to calculate the limiting trajectory. As expected, the trajectory analysis agrees with the 
exact calculations for Pe+ GO. However, the difference becomes small only for quite 
large Peclet numbers Pe 2 O(102). 

A comparison is also possible between our calculations for h = 0.5 and I; = lo4 and 
the asymptotic theory of Wang & Wen (1990) for solid spheres. According to their 
work, for h = 0.5, ,ii = GO, A / k T  = 1.25, and Pe 4 1, 

(6.6) 
The ratio EIE,, where E is given by (6.6) and EA is the two-term asymptotics (6.2), is 
plotted in figure 9(b) (the dotted line). An excellent agreement with our calculations 
(the solid line for I; = lo4) is observed when Pe 4 1, but, unfortunately, the range of 
validity of the asymptotic theory is rather narrow. 

Interestingly, the presence of the unretarded van der Waals attraction makes the 
additive approximation more acceptable, especially for size ratios close to unity, 
although this approximation still underestimates the collision efficiency. In case of 
h = 0.9, the maximum error of this approximation E z C/Pe+ ET (where ET is the 
result by a trajectory analysis, see above) varies from 8 YO (for ,ii = 0) to 1 YO (for I; = lo'). 
For the other values of h = 0.5, 0.25 and 0.1, the corresponding errors are 11-5%, 
18-15%, and 31-33%, respectively. So, it is still unreliable to use this approximation 
for very different size ratios. It should be also noted that, in the presence of the van der 
Waals force, the additive approximation becomes a numerical method, since the 
calculation of ET needs a trajectory integration for each Pe. For this reason, a simple 
and much more accurate numerical method, based on PA, is preferred. 

The Hamaker form (6.4), although frequently used in collision rate calculations, 

E N  1.14(1+0.57 Pe+0.253 Pe'ln Pe-0.097 Pe2)/Pe. 
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neglects electromagnetic retardation and is valid only for separations between the 
drops less than-the London wavelength A,, which is typically of order 0.1 pm. In 
principle, the retarded van der Waals potential, valid at arbitrary separations, can be 
rigorously obtained by Lifshitz theory, but the calculations are complicated (Langbein 
1974) and require dielectric data which are specific for each system and not always 
easily available. In the pairwise approximation, which is unlikely to introduce a large 
error, the retarded potential was obtained by Clayfield, Lumb & Mackey (1971) by an 
exact integration of the van der Waals energy between the two atoms, separated by a 
distance p :  

where p = 27tp/h,, p = A/(x2qg2kT) ,  and q is the number density of atoms. The 
Casimir-Polder approximation for Ap), used by Clayfield et al. (1971), has different 
analytical expressions for p < 3 and p > 3, resulting, unfortunately, in extremely 
cumbersome formulae for the total sphere-sphere interaction, especially when 
differentiation is needed to obtain the force. We believe that, instead of switching 
between different analytical expressions for f(p), a more attractive approach is to 
integrate the Shenkel & Kitchener (1960) approximation: 

2.45 2.17 0.59 
f ( P )  = p-- p 2  +P”’ 

accurate in the wide region p > 0.5. The corresponding formulae (used in the present 
work) are given in Appendix D and are applicable if pq = 2x(s-2) /v  > 0.5, with 
v = 2h,/(a, + aJ. For a, > A, (the only case considered in the present work), the 
condition p, > 0.5 breaks down only in the geometrically simple region s-2 < 1, and 
so in this case the near-field approximation of Ho & Higuchi (1968), 

A h 1 
@ =--- 

l2  3(s-2)(1 +h)’(I+ 1 . 7 6 9 ~ ~ ) ’  
is used. 

With allowance for retardation, E depends on five dimensionless parameters: A, ,k, 
Pe, A / k T  and v, which complicates a full analysis. Instead, we have chosen typical 
hydrosol dispersion parameters (Zhang & Davis 1991): g = 981 cm sP2, Ip’-pe( = 
0.1 g cmP3, A / k T  = 1.25, ,k = 1, A, = 0.1 pm, and studied the collision efficiency E 
versus the radius a, of the larger drop for h = 0.5. For this system, the PCclet number 
is Pe = 0.19a;’, where a, is in pm. The exact method of §3 becomes more expensive to 
apply in this case, since the potential #(s) in (3.20) depends on Pe via v, and so the 
expansion in powers of w should be done anew for each PCclet number, taking v as a 
parameter. However, our calculations have comprehensively demonstrated the success 
of the parabolized approximation for drops with and without unretarded attractions, 
and so, in the intermediate case of a retarded van der Waals force, the PA is used with 
confidence, instead of the exact solution. The calculations are presented in figure 11 ; 
to avoid logarithmic scales, the results for small and large drop sizes are given 
separately. The retarded force increases the collision efficiency by no more than 16 YO. 
Hence, neglecting the interparticle force may be a reasonable approximation, especially 
considering the difficulties of reliable calculation of van der Waals attractions. On the 
other hand, figure 11 shows that the neglect of retardation overestimates the effect of 
the attractive force, approximately by a factor of 2. Of course, these conclusions have 
been drawn for I; = O(1) and A / k T  = O(1). For high viscosity ratio ,k, van der Waals 
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No attractive force 
Retarded force 
Unretarded force 

4 0  

No attractive force 

Unretarded force 
~ Retarded force 

. . . . . . . . . . . . . . . . 

1.0 1.2 1.4 1.6 1.8 2.0 2 4 6 8 10 

a 1  (Pm) a 1  (Pm) 

FIGURE 1 1. The effect of the van der Waals force on the collision efficiency of typical hydrosol drops 
versus the radius of the larger drop for (a) small and (b) large drops, with Ap = 0.1 g ~ m - ~ ,  A / k T  = 
1.25, and A,, = 0.1 pm. h = 0.5, ,2 = 1. 

attraction becomes of vital importance (being the only reason for collision of solid 
spheres), while the effect of retardation is negligible for sufficiently small A / k T  (Zhang 
& Davis 1991). 

7. Concluding remarks 
Gravity-induced coalescence of spherical drops in a dilute system was considered, 

with allowance for Brownian motion, internal circulation and van der Waals 
attraction. As the physical limitations of the present study, we assumed inertia and 
droplet deformation negligible. For drop radii less than 50 pm, these conditions are 
usually met, as discussed in detail by Zhang & Davis (1991). An efficient method was 
developed for the numerical solution of the full Fokker-Planck equation for the pair 
distribution function at arbitrary Peclet numbers. The method is based on an analytical 
continuation into the plane of complex PCclet numbers Pe (after the boundary 
condition at infinity has been transferred to some remote, but finite, computational 
boundary) and on a special conformal mapping, to represent the solution as power 
series convergent for all real Pe. The developed technique is expected to apply to a 
variety of two- and three-dimensional convection-diffusion problems at arbitrary 
Pecle t numbers. 

Using this method, the extensive calculations are presented for the collision 
efficiency, as a function of size ratio, particle-to-medium viscosity ratio, and the Peclet 
number, both with and without unretarded van der Waals forces. For typical 
hydrosols, the effect of Brownian motion on the collision efficiency is pronounced, if 
Pe < O(100). In particular, for Pe - 10, a deterministic trajectory analysis may 
typically underestimate the collision efficiency by a factor of 2. For drops without van 
der Waals forces, it was found, both analytically and numerically, that the finite-Peclet- 
number correction to the collision efficiency is of the order Pe-lI2, when Pe + 1. 
Excellent agreement was observed between our numerical solution for finite Pe and the 
limiting cases Pe 4 1 and Pe 9 1 studied before. 

A parabolic approximate solution (PA) was also considered, based on neglecting the 
transversal diffusion (along the &direction). This parabolization of the Fokker-Planck 
equation results in a very fast and simple method and yields remarkable accuracy, with 
an error not exceeding 2-3 YO. Moreover, this approximation becomes practically 
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indistinguishable from the exact solution for Pe 3 5.  The success of PA may be due, 
in part, to radial symmetry of the interparticle potentials considered. We conclude that 
PA can be always recommended as a practical method for calculating the gravity- 
induced collision efficiency for arbitrary size ratio A, particle-to-medium viscosity ratio 
I;, any form of the van der Waals attractive potential (with or without retardation) and 
Pe < O(103). The use of PA is particularly helpful for Pe 2 0(102)), when the exact 
solution becomes slow. For Pe > 1000-2000, the solution by PA may be inapplicable, 
owing to divergence of the power expansion (see $ 5 ) .  However, a trajectory analysis 
quite suffices for this region. 

In contrast to PA, the ad lzoc additive approximation was found to provide an 
acceptable accuracy only for particles of close radii with sufficiently strong van der 
Waals attraction. In the other cases, this approximation is rather poor; in particular, 
for drops without attractive forces, a maximum error of about 60% was observed. 

We also studied the effect of van der Waals attractions on the collision efficiency. For 
typical emulsion drops of 1-10 ym size, with ,i - 1, A/kT  - 1 and h = 0.5, the 
unretarded force increases the collision efficiency by about 30 YO. When retardation is 
taken into account, the increase due to the interparticle force becomes approximately 
half as much. Hence, for I; < O(1) and A/kT  < O(l), the neglect of van der Waals 
attraction may be a reasonable approximation, when dielectric data for rigorous 
calculation of the molecular force are unavailable. 

Our method for the exact solution of the Fokker-Planck equation at arbitrary Pkclet 
numbers is expected to apply to the other problems, such as drop coalescence in shear 
flows, when the idea of the approximate solution through parabolization fails owing 
to the complicated nature of relative trajectories. 

This work was supported by NSF grant CTS-8914236, NASA grants NAG3-1277 
and NAG3-1389, and by a grant from the National Research Council through its 
Cooperation in Applied Science and Technology Program. 

Appendix A. On the calculations of two - drop hydrodynamic functions 

velocities V, and V, in a quiescent liquid can be written as (Zinchenko 1982) 
The hydrodynamic forces 4 and F, exerted on the two drops moving with the 

(A 1) 
(A 2) 

where the indices 1 1  and I denote the vector components along and normal to the 
line of centres, respectively. The exact reciprocity relations hold for the resistance 
coefficients Aij  and Ti: 

(A 3) 
Equating -q and -4  to external or thermodynamic forces and using the relation 
(2.2), one can express the necessary functions L, M ,  G,  H via Aij and Ti, 

4 = - 6 7 ~ ~ e  a,[A11( V, - V,)" +A, ,  V!! + Ti( - V,)' + T , 2  Vi] ,  
F, = - 6xpe a2[AZl( V, - V,)" + A22 Pi + TI( V, - V,)' + T,, V i ] ,  

All - An2, = A,,, T,, - ATl = q2. 

The same relations hold for M and H, respectively, with A ,  replaced by TI.  The 
bispherical coordinate solutions for the axisymmetrical problem are well known 
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(Rushton & Davies 1973; Haber, Hetsroni & Solan 1973) and, in principle, allow 
calculation of Aij  as infinite series at arbitrary separations. In the present calculations, 
we used a version of bispherical coordinate formalism (Wang, Zinchenko & Davis 
1994) with a quite simple algorithm and high accuracy for very small gaps. To calculate 
the transversal resistance coefficients qj, and the functions A4 and H ,  a more 
complicated bispherical coordinate solution and the algorithm of Zinchenko (1 980) 
were used. 

The convergence of these solutions is slow for very small separations, and so a 
significant improvement in the efficiency of calculations is achieved by using near-field 
asymptotics. When ( = s- 2 + 0, the coefficients A12 and A Z 2  can be replaced by their 
finite limiting values Ai2 and Ai2 for two touching spheres. For the singular coefficient 
A,,,  the asymptotics of Zinchenko (1982) hold : 

X 2 9 3 / 2  h(3-k2) [(l+h) 
2: 8(1+h)2[1'2- 9(1+h) 

where the parameter c, depends on h and ,L. Instead of using cumbersome integral 
representations for At,2,At,2 (Reed & Morrison 1974) and for c, (Zinchenko 1982), a 
more practical method is to estimate these quantities with a sufficient accuracy from the 
bispherical coordinate solution for several very small separations (with c, being 
estimated as the difference between the exact value of A, ,  and the sum of the first two 
terms on the right-hand side of (A 6)). On doing so, we obtain near-field representations 
for L and G, using (A 4)-(A 5) .  

The asymptotics (A 6) are not uniformly valid when ,ii+ 00, i.e. for high viscosity 
ratio, the range of separations where (A 6) is applicable becomes too small. However, 
for ,L $- 1 and ( + 1, a different asymptotic form can be used : 

The functionf(rn) was calculated numerically by Davies et al. (1989) and an accurate 
Pade-approximate was found : 

1 + 0.402 rn 
f ( m )  = 1 + 1.711 rn+0.461 rn2 

Unlike (A 6), the asymptotics (A 7) enables the solid-sphere limit rn + 0. On the other 
hand, it can be shown that, when m + co, the asymptotics (A 7) matches (A 6) both in 
the leading term and in the part of the logarithmic term proportional to ,L2, provided 
that f ( m )  is calculated exactly. A reasonable criterion, for a given ,L $- 1, to select 
between the two asymptotic forms (A 6) and (A 7) is to compare the exact values of L 
and G with the near-field approximations based either on (A 6) or on (A 7) for a 
sequence of small separations and choose the form which yields the prescribed 
accuracy for a wider range of separations. 

For asymmetric motion, the coefficients 7;, approach their finite limiting values for 
touching with an error O(()  (Zinchenko 1980); thus, for ( + 1, a linear extrapolation 
of M and H can be used, to considerably increase the efficiency of calculations, as in 
Zhang & Davis (1991). The idea of linear extrapolation fails at very high viscosity ratio 
,L, since, for solid spheres, M ( [ )  and H ( [ )  approach M(O), H(0) with an error O(lln (I-') 
(Batchelor 1976). In our calculations with high values ofb, this difficulty was bypassed 
owing to van der Waals forces, which allowed us to avoid the calculation of 
hydrodynamic functions at very small separations (see 63.1). 
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Appendix B. On the spectrum for convection-diffusion problems 
Consider a general boundary-value problem for the equation 

V - ( D ( r )  - V p )  = Pe V . (pu(r))  +Ar) (B 1) 
in a finite domain V with the boundary a V = a V, u a V,. The symmetric tensor D(r) and 
the velocity field v(r) are assumed to satisfy 

a . D . a > O  fora+O,  (B 2) 
V . u = O  forrEV. (B 3) 

The right-hand side function f i r )  is assumed given. The boundary conditions for p(r)  
are assumed to be of the first kind on a <  and of the third one on a&,  i.e. 

p=q5 for rEa5 ,  

a p + n . D . V p = g  forrEa&, 

where the scalar functions a(r) 3 0, q5(r), and g(r)  are given, and n is the outward 
normal to V. The velocity flux is assumed to vanish on a&,  

v .  n = 0 for r&&. (B 6) 
Consider the spectrum for the problem (B I), (B4)-(B 5) ,  i.e. the set of PCclet 

numbers Pe in the complex plane, for which the corresponding homogeneous spectral 
problem (i.e. with f = q5 = g = 0) has a non-trivial solutionp $; 0. It is remarkable that 
all the spectral values of Pe lie on the imaginary axis. 

As proof, consider a linear space 9 of complex-valued functions p ( r )  satisfying the 
homogeneous boundary conditions (B 4)-(B 5),  and the operator A in 9 : p z  = Apl ,  if 

V * ( D  * Vp,)  = V * (PI v) ,  

p z  = 0 for r ~ a V , ,  

u p , + n - D . V p ,  = O  for r€a&.  (B 9) 
A scalar product in 9 is defined as follows 

where the star denotes complex conjugate. All the necessary properties of a complex 
scalar product are satisfied. In particular, the divergence theorem and the boundary 
conditions for p E 9 imply 

( P , P )  = ~ ~ v , u l ~ l ~ d S + ~ v v ~ . D . ~ P ~ ~ V ~ ~ .  (B11) 

The operator A is antisymmetric with respect to the scalar product (B 10). Indeed, 
the definitions (B 7)-(B 10) yield 

W P l ,  P,)  + (PI ,  APZ) = - P,* v - ( P l 4  d V -  P1 v * <P,* 4 d V. (B 12) s, s, 
The condition (B 3) and the divergence theorem simplify the right-hand side of 
(B 12) to 

(B 13) 
av1 u av, 
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which equals zero, according to (B 6) and the boundary conditions for p I , p a  E F. The 
spectral problem is equivalent top  = Pe Ap, and all the eigenvalues of an antisymmetric 
operator are always purely imaginary (Bellman 1970). 

Unfortunately, this proof does not hold for our coalescence problem, owing to 
V - u i 0, except for the case of an extremely small size ratio, when a small particle or 
drop tends to move along the streamlines past a large one. However, the scheme 
(B 1)-(B 6) includes a large number of other problems, e.g. the steady convective 
diffusion to an arbitrary-shaped particle (or a collection of particles) in an 
incompressible flow (Gupalo, Polyanin & Ryazantsev 1985), when the far-field 
boundary condition for the concentration is imposed on some remote, but finite 
computational boundary. Hence, the efficient method of Q 3.2 is applicable to these 
problems. If the spectrum slightly deviates from the imaginary axis due to finite- 
difference or Galerkin approximation, the number of nodes and/or the number of 
basis functions should be large enough to make the expansion in powers of w 
convergent for Pe < Pe,. 

Appendix C. Additional details 
The familiar substitution (Acrivos & Taylor 1962) 

p = 1 +e-Pet’2C, z = scos H, 
reduces (4.1) to 

V2C-$Pe2 C = 0. 

The solution for the standard equation (C 2) can be found by separating variables, 

(C 3) 
cu 

C(S,H) = C C, R, 
n=O 

where 

is the modified spherical Bessel function (Kn+l,z being the McDonald function of the 
order n+i) .  Let dn be the Legendre coefficients for exp(Pex), i.e. 

m 

= d, P,(x) for - I < x < 1, (C 5 )  

(C 6) 

n=o 

1 

d, = i(2n + 1) 1-1 epe”P,(x) dx. 

The relations (C 1) and (C 3) yield the solution of the problem (4.1)-(4.3), if 

C, = -d,/R,(Pe). 

According to (4.2) and (C l), the collision efficiency for the 

Substituting (C 3) and (C 7) into (C 8) and using the 
polynomials, we have 

m 2 Rk(Pe) 
E =  C ~ 

2n + 1 ’ R,,(Pe) ’ n=u 

(C 7) 

Smoluchowski model is 

(C 8) 

properties of Legendre 

(C 9) 
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The properties of R, and P,, (Abramowitz & Stegun 1972) yield the relations 

Pe 
sinh (Pe) 

Pe 
do = 

d, = Pe(---). dn-1 dn+1 
2n-1 2n+3 

The form (C 9)-(C 12) of the solution was used in our calculations for table 1, with 
very fast convergence for small Pe. While formally exact for the model (4.1)-(4.3), this 
representation is, however, impractical when Pe 2 0(10), because of a rapid loss of 
accuracy in summing up (C 9). 

The simplification (4.1) of FP equation is also helpful for understanding the 
properties of the exact solution, with full hydrodynamic interactions. First, this 
simplification always holds at large distances, since the functions L, M ,  G and H can 
be replaced by unity and the van der Waals attraction neglected for s % 1. Hence, for 
s % 1, the solution has the form (C 3), even though the coefficients C,  have no 
connection to the inner boundary condition. Using the asymptotic result (Abramowitz 
& Stegun 1972), 

(C 13) 
I t  

R,(x) N -e-" for x +  co, 2x 

we arrive at the far-field representation 

1 
P = 1 + - e x p ( - P e s ( l + c o s 8 ) / 2 ) ~ ( ~ 0 ~ 8 ) ,  S (C 14) 

valid for any finite Pe, when s + co. As expected, the approach to unity when s + co is 
exponential everywhere, except in the wake cos 8 z - 1. The Legendre coefficients 
(3.1) can be obtained from (C 14): 

According to the Laplace method, the function F ( p )  Pn(p) for s % 1 can be replaced by 
F( - 1) P,( - 1) 4= 0 and the upper integration limit by 00, implying the O(spl) estimate 
for the integral (C 16). Thus, for fixed n and Pe + 0, the coefficient a, behaves like 
an, + O(s-') when s + 00, as was stated in $ 3.1. Interestingly, the asymptotic structure 
of the solution described in $4 yields the same behaviour of a, for Pe = co. 

Finally, the simplification (4.1) allows us to study how the radius h of convergence 
of (3.21) behaves, when the position s = sI of the outer boundary tends to infinity. 
Indeed, when estimating h for sI % 1, it seems plausible to neglect a relatively small 
region, s - 2 ,< U( l), where the approximation (4.1) is invalid. So, the eigenvalue 
problem for p = exp (- Pez/2) C simplifies to 

(C 17) 
Pe2 v2c--c = 0, = 0. 
4 
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The inner boundary condition is lost and replaced by a regularity of C at s = 0. 
Substitution Pe = ih yields the eigenfunction 

(C 18) 
1 C = - sin (:hs) 

with the minimum possible h = 27c/sI. Albeit not quite rigorously derived, the 
asymptotic result h N 27t/sI for sI+ 00 is completely confirmed by our numerical 
calculations. 

S 

Appendix D. On the retarded van der Waals interaction between two 
spheres 

In order to integrate the interaction energy (6.7) and (6.8) over the volumes and 
& of the two spheres of radii a, and a, with centre-to-centre distance r ,  consider the 
integrals 

for integers n 2 6. Expanding I, as a double series in powers of a, and a2, one can 
derive 

(D 2) 
a 

-(rIn) = -(n- l)rI,+l. 
ar 

Hence, the explicit expressions for I ,  with n 
Hamaker integral I ,  (see (6.4)): 

7 can be obtained, starting from the 

4n2 
In = 

(n - 2) !rn+ n' 

By using (6.7) and (6.8) and (D 1F(D 6), the dimensionless interparticle potential 
4 = cD12/A and its derivative $'(s) take the form 

~ . ~ ~ Q J , - - Q ~ ~ + - Q ~ J , ] ,  2.17 0.59 
60 12 168 

1 k.4552(4 + 4) --Q2(J, 2.17 + 4) +---Q3(4 0.59 +J,,) , (D 8) 
120 12 168 $'W = 

where 52 = h J ( w ) .  
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